3. MEASLRES OF DISEASE FREQUENCY

-

Kemuth: Dotrunem

Kennegh Rotamas Epidemiologáa moderna.

The clearest of many definitions of epidemiology that has been proposed has been antributed to Gaylord Anderson [Cole, 1979]. His definition is

Epidemiolog?: the study of the occurrence of illness

Other sciences are also directed toward the study of illness, but in epide miology the focus is on the occurrence of illness. As a branch of science pidemiolog deals with the evaluation of scientific hypotheses. These hy potheses are often posed as qualitative propositions. The "null" form of uch propositions is highly refuable and, as discussed in the previous chapter, derives its empirical content from this characteristic. Unlike the framing of hypotheses, scientific research, which comprises the activity of attempted refutation of hypotheses, is predicated on measurement. Qual tatively stated hrpotheses about evolution, the formation of the earth, the effect of grasity on light maves, or the method by which birds find thei way during migration are all tested by measurements of the phenomen that relate to the hypotheses. The physicist Kelvin aptly stated the impor rance of measurement in science [cited in Beiser, 1960]:

I fien say that when you can measure what you are speaking about, and express is in muber, you how something about it but when you camot express it in it in mere and unsaisfactory kind; it may the beginning of kinorledge, but you have scarcely, in your thoughts, advanced to the stage of Science, whatever the matter may be
 disease, but it was only when measurement of the occurrence of disease replaced reflection about causation that scientific knowledge about causation made impressive strides. The fundamental task in epidemiologic research is thus to quantify the occurrence of illness. The goal is to evaluate hypotheses about the causation of illness and its sequelae and to relate disease occurrence to characteristics of people and their environment.

There are three basic measures of disease frequency. Incidence rate is measure of the instantaneous force of disease occurrence. Cumulative incidence measures the proportion of people who convert, during a specified period of time, from nondiseased to diseased. Prevalence measures e proportion of people who have disease at a specific instant. These measures and their interrelation will be described in detail.

Fig. 3.2. Size of a jived population of 1,000 people, by time.
Fig. 3-1. Tuo different patterns of disease occumence.
sider the frequency of a disease that ultimately affects all people, namely, death. Since all people are eventually affected, the time from birth to death becomes the determining factor in measuring the occurrence of death. Time differentiates berween the two situations shown in Figure 3-1.
Time differentiates berween the must an incidence measure musto account the number of inThus, an incidence measure must take into account the number of in-
dividuals in a population that becomes ill and the time perjods experienced by members of the population during which these events occur. Incidence rate is therefore defined as the number of disease onsets in the population divided by the sum of the time periods of observation for all individuals in the population:

$$
\text { Incidence rate }=\frac{\text { no. disease onsets }}{\Sigma \text { time periods }}
$$

Where Σ indicates the sum of time periods for all individuals.
For many epidemiologic applications, the possibility of a person getting a disease more than once is ruled out by either convention or biology. If the disease is rhinitis, tre may simply rish to measure the incidence of "first" occurrence, even though disease can occur repeatedly; for cancer, frst occurrence, and many other illnesses, first occurrence is ofien of greater heart disease, and many oberuent occurrences in the same individual. For interest for study than subsequent occurrences in the same individual. For an outcome such as death or a disease sui) as diabetes, which is considered not to recur but to be a permanent state once diagnosed, only first occurrence can be studied. When the events tallied are first occurrences of disease, then the observation period for each individual who develops

the disease terminates rith ihe onset of disease.
 Because incidence rate is a quotient with a frequency in the numerator

 and a measure of time in the denominator, its dimensionality is time ${ }^{-1}$, that is, the reciprocal of time. The denominator of the rate can also beconsidered a product of population size by the average time period of obsenation for a member of the population, although this product is, like any product, onle a shorthand description of the appropriate summation The denom, aior of the incidence rate is often referred to as a measure of "person-time" to distinguish the time summation from ordinary clock time. The person-ime measure forms the obsenvational experience in which disease onsers can be observed Impicit in the measure is the conHepr that a given amount of person-time, say 100 person-vears. can be cept hat a given amount a dariery of populations in a varient of circumstancderived from obsenting a variety of populations in a y year, 50 persons for 2 cs. That s, the bocerame 6 months, or one person for 100 years are assumed years, 200 persons for 6 months, or one person sor 100 ye equivalent to to be equivalent. One unit of person-time is assumed ro equalion aland independent of another unit of person-ime. This assumption, al though generally a reasonable one, could be unwarranted in extreme sit-uations-for example, obsenving one individual for 100 vears to obtain 100 person-vears. Usually the units of person-time are restricted by age, ohich eliminates extreme departures from independence of the personanch elimmates extreme departures from indepearsof experience in the age range 50 to 54 vears with fewer than 20 individuals.
age range 50 to 54 vears wind the person-time experience of two distinct Conceptually we can inagine the person-tione and the dyamic population. A types of populations, the fixed poputation and the dyamic population. A fixed population adds no new members, whereas a dynamic population does. Suppose rie are measuring the mortality rate, denned fier a period dence rate of death, in a fixed population of 1,000 people. After a period of sufficient time, the original 1,000 will have dwindled to zero. A graph of sufficient size of the population with time might look like that in Figure 3-2. of the size of the population with time might look ne we the 1,000 ind dividuals eventually all
The curve slopes downard because the The curve slopes downward because the 1,000 individuals e the fate of only die. The population is fixed in the sense that we consider the fate of only the 1,000 individuals initiallv identified. The person-time experience of these 1.000 individuals is represented by the area under the downwardthese 1,000 individuals is represented by the area under the downard

sloping curve in the diagram. As each individual dies, the curve notches downward; that individual no longer contributes to the person-time ob servation pool of the fixed population. Each individual's contribution is exactly equal to the length of time that individual is followed from start to finish; in this example, since the entire population is followed until death, the finish is the individual's death. In other instances, the contribution to the person-time experience would continue until the onset of disease or some arbitrary cutof time for observation, whichever came sooner.
Suppose re added up the total person-time experience of this fixed population of 1,000 and obtained a total of 75,000 person-years. The morpopulation rate would be (1,000/75,000) year ${ }^{-1}$ since the 75,000 person-years represent the experience of all 1,000 people until their deaths. A fixed population facing a constant death rate would decline exponentially in size, but in practice "exponential decay" virtually never occurs. Because a fised population ages steadily during the observation period, the death or fised population ages steadily during the obse ratly changes with time because of disease rate in a fised population generally changes with time because of the change in age. Life-table methodology is a procedure by which the mortality (or morbidity) of a fixed population is evaluated within successive small time intervals so that the time dependence of mortalin can be elucidated.
A dinamic population differs from a fixed population in that we do not restrict the observations to any fixed group. Instead, we extend the observations to those entering the population as observation time proceeds. people enter a population in various ways. Some are born into it; others migrate into it. Fur a population of people of a specific ase, individuals also enter the population by aging into it. Similarly, individuals can exit from the person-time observational experience by dying, aging out of a from the person-time observational experience by dying, $\frac{\text { aging out of a }}{\text { defined age group emigrating, and becoming diseased, if only first bouts }}$ defined age group, emigrating, and becoming diseased, if only first bouts of a disease are being studied. If the number of people entering a population is exactly balanced by the number exiting the population in any period of time, the population is said to be in a steady state. Steady state is a property that applies onlv to dinamic populations, not to fixed populations.
The graph of the size of a dynamic population in steady state is simply a horizontal line. People are continually entering and leaving the persontime experience in a way that might be diagrammed as shown in Figure $\frac{3}{3-3}$
In the diagram, the symbol $>$ represents an individual entering the perIn the diagram, the symbe experience, a line segment represents that individual's contribution to the person-time experience, the termination of a line segment indicates removal from the person-time experience, and X indicates removal from the person-time experience because of disease onset. In theory, if the incidence rate is constant during time, any portion of the pop-ulation-time experience of a dynamic population in a steady state will

proride a good estimate of disease incide. 2 . The value of incidence will be the ratio of the number of cases of disease onset, indicated by X, to the tro-dimensional (population \times time) area. Because this ratio is equivaent to the densin of disease onsets in the observational area, the inci-
 dence rate has also been referred to as force of morbidity (or force of morAnother synony for the meas

tality in reference to deaths).

The numerical range for mo idence rate is zero to infinity, corresponding to the range of densities of points in two-dimensional space. How can dicease incidence be infinite? Infinity is the theoretical upper limit for a disease that is universal and strikes quickiy. If a population in a space coldisease that is unitare sudden all exposed without protective gear to the enviromment ony were suddenly all exposed without protective gear to he enthough not of space, the incidence rate of death would be extremely high, thoughot limiting quite at infiniry, because death rould not be instantaneous. The limiting ralue of infinity is approached only at the instant of some sudden holocaust. To some it may be surprising that an incidence rate can exceed the value of 1.0 , which rould seem to indicate that more than 100 percent of a population is affected. It is true that at most only 100 percent of a population can get a disease, but the incidence rate does not measure the proportion of a population with illness. The measure is not a proportionpropll that incidence rate is measured in units of the reciprocal of time recall that incidence rate is mean inan 100 deaths can occur, but those 100 Anong 100 peopte, no more than 100 dean 1000 deaths can occur in 10,000 person-years, in 1,00 person-years, in 100 per son-years, or even in 1 person-jear (if the 100 deaths occur after an average of 3.65 days each). An incidence rate of 100 cases (or deaths) per 1 person-year might be expressed as

It might also be expressed as

$$
\begin{align*}
& 10,000 \frac{\text { cases }}{\text { person-century }} \text { or } \tag{or}\\
& 8.33 \frac{\text { cases }}{\text { person-monh }} \text { or } \tag{or}\\
& 1.92 \frac{\text { cases }}{\text { person-week }} \text { or } \tag{or}\\
& 0.27 \frac{\text { cases }}{\text { person-day }}
\end{align*}
$$

The numerical value of an incidence rate in itself has no interpretability because it depends on the arbitrary selection of the time unit. It is essential in presenting incidence rates to give the appropriate time units, either as the examples given above or as in $8.33 \mathrm{month}^{-1}$ or 1.92 neek ${ }^{-1}$. In epidemiologic writing, the units are often given only implicitly rather than explicitly, as in "an annual incidence of 50 per 100,000 ." The latter quantity is equivalent to

$$
\frac{50}{100.000} \frac{\text { cases }}{\text { person-years }} \text { or } 5 \times 10^{-4} \text { year }^{-1}
$$

It is preferable, however, not to use an expression such as "annual incidence of"; this description is analogous to describing a velocity of 60 milesihr as "an hourly velocity of 60 miles." Aside from being clumsy, it makes an inappropriate implication about time, as if the measure applied to the entire stated interval of time when in fact it does not. A velocity of 60 milesihr does not apply to an hour of time; one need not travel at the velocity for an hour nor spend an hour to measure it. The velocity of 60 miles/hr is an instantaneous concept: One can readily conceive of raveling at that relocity at a specific instant in time. Whether the velocity is expressed as 60 miles/hr or $88 \mathrm{fee} / \mathrm{sec}$ or 0.57 astronomical units/century makes no difference; the same speed is indicated, and the units of time used to express it have no bearing on the instantaneous nature of the measure. The same principle applies to incidence rate [Elandt-]ohnson, 1975]. Like relocity, it is alwavs an instantaneous concept, even with units of person years or person-centuries. Thus, there is nothing annual about an amual incidence, and it would be preferable not to use such terminology.

The dimensionality of incidence rate, that is, the reciprocal of time, makes it an awkward measure to absorb intuitively. The measure does,
however, have an interpretation. Referring back to Figure 3-2, one can see that the area under the curve is equal to $N(T)$, where N is the number of people in the fixed population and T is the average time until death. This is equivalent to saving that the area under the curve is equal to the area of a rectangle with height N and width T . Since T is the average time until death for N people, the total person-time experience is $N(T)$. The timeaveraged mortality rate at complete follow:up, then, is $N / N(T)]=1 / T$: that is, the mortality rate equals the reciprocal of the average time until death, or, more generally, incidence rate equals the reciprocal of the average time until disease onset [Morrison, 1979]. Thus, a mortality rate of $0.04 \mathrm{yr}^{-1}$ indicates an average time until death of 25 years. If the outcome is not death but either disease onset or death only from a specific cause, the interpretation above must be modified slightly, The time period at issue is then the average time until disease onser, assuming that a person is not at risk of other causes of death. That is, the measure is a time conditional on no other competing risks of death. This interpretation of incidence rates as the inverse of the average "raiting time" will not be valid unless the incidence rate can be used to describe a population in steady state or a fixed population with compleie follow-up. For example, the motality rate for the Lnited States in $197 /$ ras 0.0088 year ${ }^{-1}$, suggesting a mean lifespan, or expectation of life, of 114 years. Other analyses indicate that the actual expectation of life in 1977 was 73 years. The discrepancy is due to the lack of a steady state.

CUMLLATNE INCIDENCE
Despite the interpretation that can be given to incidence rate, it is occasionally more convenient to use a more readily interpretable measure of disease occurrence. Such a measure is the cumulative incidence, which may be defined as the proportion of a fixed population that becomes diseased in a stated period of time. If risk is defined as the probability of an individual developing disease in a specified time interval, then cumulative incidence is a measure of average risk. Like any proportion, the value of cumulative incidence ranges from zero to 1 and is dimensionless. It is uninterpretable, however, nithout specification of the time period to Which it applies. A cumulative incidence of death of 3 percent may be low if it refers to a 40 -year period, whereas it would be high if it applies to a 40-day period.
It is possible to derive estimates of cumulative incidence from incidence rate. Consider a fixed population (Fig. 3-4).
At time $t, C_{1}=\left(P_{0}-P_{1}\right) / P_{0}$; in words, the cumulative incidence at time t equals the number of people who have exited the fixed population by time t because of disease $\left(P_{Q}-P_{1}\right)$ divided by the initial number of people

there the summation of the index, i, is over categories of time covering the interval $[0, \mathrm{r}$].

For a constant incidence rate

$$
C I_{1}=1-e^{-1 \Delta t}
$$

Because $e^{x} \doteq 1+x$ for $|\mathrm{x}|$ less than about 0.1, a good approximation for a small cumulative incidence (less than 0.1) is

$$
\mathrm{CI}_{1} \doteq \sum_{i} \mathrm{I}_{1} \Delta \mathrm{I}_{i} \quad \text { or } \quad \mathrm{Cl}_{1} \doteq \mathrm{I} \Delta \mathrm{t}
$$

if the rate is constant with tine. Thus, to estimate small risks, one can if the tate is constant mith the. Thus, to time period. The above approxsimply multiply the incicence rate bor for the incidence rate; it can be imation offers another interpretation to the time period for the risk as vewed as the ratio of a short-term risk to the time
the duration of the time period approaches zero. The cumulative incidence measure is premised onve 40 face there are no competing risks of death. Thus, if an individual at age 40 face there are no competing risks of 35 percent in 30 years for cardiovascular a cumulative incidence, or death. Wis is interpreted as the probability of dying from cardiovascular disease from other risks of death. Because disease given that the individual is freeting risks, the cumulative incidence no one is actually free from competing risks, measure for any outcome other than death from all causes periods is unobmeasure. In principle, cumulative incidence for lengthy periods is unobservable and must be inferred because of the influence of competing ins. A specific npe of cumulative incidence is the case fatalit) ane, whess (it the cumulative incidence of death among those who develop anciod for is therefore technically not a rate but a proportion). The time periont to measuring the case fataliry rate is often unstated, but it is always better to specify it. When unstated, presumably there is a short period of increased risk. For long periods of risk of death after disease onset, it is preferable to use the mortality rate among those with the illness rather than the case fatality rate, so that the actual time at risk for each individual can be taken into account. Because, in a steady state, the reciprocal of a rate is the av-

erage time elapsed until the event, the overall mortality rate of a disease in a population is related to the incidence rate and the mortality rate among cases as follors [Morrison, 1979]:

$$
M_{\mathrm{T}}=\frac{1}{\mathrm{~T}}=\frac{1}{T_{1}+T_{2}}=\frac{1}{1 / I+1 M_{c}}
$$

Where I' represents the incidence rate of exiting from'the prevalence pool, that is, the number who exit divided by the person-time experjence of those in the prevalence pool. Earlier we saw that the reciprocal of an incidence rate in a steady state equals the mean durat fore the incident event. Therefore, the reciprocal of 1 is the mean duration of illness, D. Thus,

$$
\text { Inflow }=I \Delta t(N-P)=\text { outfor }=(1 / \bar{D}) \Delta t P
$$

$$
\begin{aligned}
I \Delta I(N-P) & =(1 / \bar{D}) \Delta I P \\
P /(N-P) & =I \bar{D}
\end{aligned}
$$

$P /(N-P)$ is the ratio of ill to not-ill (re could call them healthy except that we mean they are not ill from a specific illness, which doesnt imply an absence of all illiness) people in the population, or equivalently, the ratio of prevalence to the complement of prevalence ($1-$ prevalence). The ratio of a proportion to the quantity 1 minus the proportion is referred to as odds. In this case, $\mathrm{P} /(\mathrm{N}-\mathrm{P})$ is the prevalence odds, or odds ferred to as odds. In the case, por having the disease. Thus, the prevalence of having a disease relative rate times the mean duration of illness. If the odds equals the incidence rate than 0.1 , then it follows that prevalence is small, say less than 0.1, then it follows that

$$
\text { Prevalence } \doteq \mathrm{ID}
$$

since prevalence will approximate the prevalence odids for small valucs of prevalence. More generally [Freeman and Hutchison, 1980],

Which can be obrained from the above expression for prevalence odds. Prevalence, being a proporrion, is dimensionless, with a range of zero o 1.0. The above equations are in accord with hese requirements, be cause in each of them the incidence rate, with a dimensionality of the eciprocal of time, is multiplied by the mean duration of illness, giving a dimensionless product. Furthermore, the product has the range of zero to infinity, which cortesponds to the range of prevalence odds, whereas the

where I is the incidence rate. During the same time interval Δt, the outflow from the prevalence pool is

4. MEASURES OF EFFECT

prevalence, studies of prevalence, or studies based on prevalent cases, pietd associations that reflect the determinants of survival with disease just as rell as the causes of disease. Better sunival and therefore a higher ${ }^{\text {a }}$

- prevalence might indeedbe related to the action of preventives that somehow mitigate the disease once it occurs.
Severtheless, for one class of diseases, namely, congenital malformations, prevalence is the measure usually employed. The proportion of babies born with some malformation is a prevalence, not an incidence rate. The incidence of malformations refers to the occurrence of the malformations among the susceptible populations of embryos. Many malformations lead to early embrionic or fetal death that is classified, if recognized, as a miscarriage rather than a birth. Thus, malformed babies at birth represent onlv those individuals who survived long enough with their malformations to be recorded as a birth. This is indeed a prevalence measure, the reference point in time being the moment of birth. Generally, it would be more useful and desirable to study the incidence than the prevalence of congenital malformations, but usually this is not possible. Consequently, in this area of research. prevalent rather than incident cases are studied.
Prevalence is sometimes used to measure the occurrence of nonlethal Penerative diseases with no clear moment of onset. In this and other situations, prevalence is measured simply for convenience, and inferences are made about incidence by using assumptions about the duration of inlness. Of course, in epidemiologic applications outside of etiologic re search, such as planning for health resources and facilities, prevalence may be a more gemane neasure than incilence

REFERENCE

Cole, P. The evolving case-control study. f. Chron. Dis. 1979; 32:15-27.
Beiser, A The World of Physics. New Hork: McGraw-Hill, 1960.
Elandr-Johnson, R. C. Definition of rates: Some remarks on their use and misuse. Am. J. Epidemiol. 1975; 102:267-271.
Freeman, J., and Huthison, G. B. Prevalence, incidence and duration. Am. J. Epidemiol. 1980; 112:-07-723.
Miettinen, O. S. Estimability and estimation in case-referent studies. Am. J. Epidemiol. 19-6; 103:226-235.
Morrison, A. S. Sequential pahogenic components of rates. Am. J. Epidemiol. 1979 109::09-718.

Epidemiologists use the term effect in two senses. In a general sense, any instance of disease may be the effect of a given cause. In a more particular and quantitative sense, an effect is the difference in disease ocusal charberween two groups of people who differ with to as an exposure.
acteristic; the characteristic is generalo incidence rate, cumulative incidence, Absolute effects are differences in incidence rate, cumulative incidence, or prevalence. Relatite effects involve ratios of these measures. a the utable proportion is the proportion of a diseased popunton exposure is one of the component causes in the sufficient cause that caused the disease.

ABSOLUTE EFFECT
Suppose that all sufficient causes of a particular disease were divided into that contain a specific cause and those that do not. We can mo sets, those that coman a
summarize this situation min contrections of causal factors. Note that disU and U represent different conecnons exposure of interest. The ease can occur either with or without E, the exposure the existence of absolute effect of exposure E corresponds sufficient causes that require E as a compone incidence rate of sufficiens fect of E can be assessed by measuring the incidence cale nevertheless causes that contain E. People who have the exposure can the exposure, develop the disease from a mechanism that does not include the exposure, so that it does not suffice to measure the incidence rate of disease among. those exposed. The incidence rate among the exposed reflects the incithose exposed. The incidence rate ames represented in the diagram. The dence of both sets of sufficient causes repiesenta mast be derived by subincidence rate of sufficient causes containing E must be den . This rate traction of the incidence rate of the sufficient causes nat ack e population can be measured in a population that resembles the exposed of in an but lachs the exposure. Thus, if T_{1} is the incidence rate of disease popuexposed population and I_{0} is the rate in a comparable, lation, $I_{1}-I_{0}$ represents the incidence rate or disedise as a component cause. The abson unexposed population.
an referred to straightforwardly as rate differ-
This measure is also often referred to stalgher, 1976], which derives ence. Synonyms include attributable from the closely related measure, risk diference, somer difference should a synonym for rate difference. Proper , hathe incidences rather than indenote only a difference in risks or cumulative incidences ramer fins cidence rates. Thus, while rate difference has a range from minus infinity cidence rates. to plus infmity and the same dimensionality as the race 1 and is dimenif incidence), risk difference has a range from

siontess.

The term attributable risk is unwarranted if no cause-effect relation exists between exposure and disease. If the exposure causes a change

and the relative effect is

$$
\begin{equation*}
\frac{I_{1}-I_{0}}{I_{0}}=\frac{I_{1}}{I_{0}}-1 \tag{4-1}
\end{equation*}
$$

Compared with the absolute effect, the relative effect measure is ofien a Compared with the absolute effer association or, under the appropriate clearer indicator of the strength of and and Haenszel, 1960]. Consequently, circumstances, causal is for etiologic research. The relative effect measure has two components, the ratio of incidence rates $\left(I_{1} / I_{0}\right)$ and the constant has wo components, the ratho is omitued from the measure; epidemiologists (-1). Typicalli; the constant is ommed from of the measure; it is known as usually refer only the incidence rate ratio or risk ratio, which are purely descriptive terms, and also as relative risk, relative rate, or simply rate ratio. With the constant omitied from the measure, there is a translation of scale. When there is no effect, $\mathrm{I}_{1}=\mathrm{I}_{0}$, and the full measure is $1-1=0$, whereas the rate is no effect, $1_{1}=1_{0}$ ane measure is unity. It is important to remember this ratio component of the measure is unde ratio measures. For example, if
incidence or risk, then the risk or rate difference observed may indeed be attributable to the exposure, but many scientists might reasonably object to the unnecessary causal implication inherent in the term attributable risk (or attributable rate). To the extent that a rate difference is indeed attributable to the exposure, however, the measure is a useful one for estimating the magnitude of the public health problem presented by the exposure. In this context it is noterorthy that the absolute effect is not affected by changes in the baseline incidence rate of disease.

RELATINE EFFECT
Relative effect is based on the ratio of the absolute effect to a baseline rate. Analogous measures are used routinely whenever change or gromth is measured. For example, if the investment of a sum of money has yielded a gain of $\$ 1,000$ in 1 year, the absolute increase in value does not reveal how effective the investment was. If the initial investment was $\$ 5,000$ and grew to $\$ 6,000$ in 1 year, then we judge the investment by relating the gain, $\$ 6,000-\$ 5,000$, to the initial amount. That is, we take the $\$ 1,000$ gain and divide it by the $\$ 5,000$ of the original principal, obtaining 20 percent as the relative, as opposed to the absolute, gain.
Analogously, we evaluate relative effect in epidemiology by taking the absolute effect, or rate difference, and dividing it by a reference value, which is usually the rate among the unexposed. Thus, if I_{0} is the incidence rate among unexposed and I_{1} is the incidence rate among exposed perrate among unexposed and
sons, the absolute effect is scale transhation when interpreting rate ratio measures. one exposure has a rate ratio of 3 , and a second exposure has a colf the of 2 , the effect of the second exposure is only half as great as that of the first because the "baseline" value, that value corresponding to the absence of effect, is uniry for the rate ratio measure.
of effect, is unity
Alhough epidemiologists usually use just he race may be made, for examting the -1 , occasionally they do not. Reference may be made, for that the ple, in a " 30 percent greater risk among exposed, this implies that the ratio of I_{1} to I_{0} is 1.3 , but the 30 percent comes ater suouacums relative 1.3. Sometimes the full measure $\left(\mathrm{I}_{1}-\mathrm{I}_{0}\right) / \mathrm{I}_{0}$ is reterred to as excess 1.3. Sometimes tistinguish it from I_{1} / I_{0} (Cole and Macivahon, 1971)
risk to distinguish it from $I_{1} I_{0}$. Cole and Nivision of one rate by another, the Because relative effect involves the division of relative effect ranges from -1 to $\frac{\text { measure is dimensionless. The value of relative effect ange fom the mea- }}{\text { plom }}$ plus in
sure.
The value of risk is time-dependent. Similarly, the value of the ratio of The value of risk is time-dependent. Similand, two risks or two cumulative incidences depends on computed. During a long Which the risks or cumulative incidences are compproach unity and the period of time, risk or cumulative incidence , mater what the values of the ratio of mo risks will also approach unity, no mater wat me valtestion of ratering incidence rates are. (This is an epidemiologic manifestation of the aphonsm, in the long run. we are all dead.")
The aphonsm, in a cher a short period of time, risk and cumulative incidence are approximately equal po the product of incidence rate with time, so that the ratio of twaty equal to the product of incidence rate nap is approximately equal to the of two risks or two cumulative incidences is approximately eq the ratio ratio of the rwo underlying incidence rates. The approximation of the ratio ratio of the two underying ind atio of incidence rates is better for smaller of cumulative incidences to the ratio of incidence rates is beter

cumulative incidences, or, equivalently, shorter time intervals, approaching equality as the time interval approaches zero. Athough both risk and cumulative incidence approach zero as the time interval becomes vanishingly small, the ratio of two such shrinking measures approaches the nonzero limiting value of the incidence rate ratio. These relationships can be summarized symbolically as follows:

$$
\begin{array}{rlll}
\mathrm{Cl}=1- & \mathrm{e}^{-\mathrm{\Delta}} \rightarrow 1 & \text { as } & \Delta \mathrm{t} \rightarrow x \\
& \frac{\mathrm{Cl}_{1}}{\mathrm{Cl}_{0}} \rightarrow 1 & \text { as } & \Delta \mathrm{t} \rightarrow x \\
\mathrm{Cl}= & 1 \Delta \mathrm{t} \rightarrow 0 & \text { as } & \Delta \mathrm{t} \rightarrow 0 \\
& \frac{\mathrm{CI}_{1}}{\mathrm{CI}_{0}} \rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{0}} & \text { as } & \Delta t \rightarrow 0
\end{array}
$$

Linlike the absolute effect. the magnitude of the relative effect depends on the magnitude of the baseline incidence rate. This dependence is one of the maior dificulties in interpreting relative measures because the same absolute effect in wo populations can correspond to greatly differing relative effects [Peacock, 1971]; conversely, the same relative effects for two populations could correspond to greatle differing absolute effects.

ATTRIBUTABLE PROPORTION
To obtain the relative effect, the absolute effect was divided by the rate among the unexposed, thereby measuring the absolute increment in disease occurrence in multiples of the rate of occurrence in the absence of exposure. If the absolute effect is divided by the rate of occurrence among the exposed rather than the unexposed, the result is a measure of the proportion of the disease among the exposed that is "related to" the exposure, the attributable proportion. This measure has also been termed the etiologic fraction [Miettinen, 1974] and atributable risk percent [Cole and MacMahon, 1971].

The attributable proportion (AP) for the exposed population is defined as

$$
A P_{\mathrm{E}}=\frac{\mathrm{I}_{1}-\mathrm{I}_{0}}{\mathrm{I}_{1}}=1-\frac{1}{R R}=\frac{R R-1}{R R} \|[14-2]
$$

where I_{1} is the incidence among exposed, I_{0} is the incidence among unexposed, and RR is the rate ratio, $\mathrm{I}_{2} / \mathrm{I}_{0}$. It can be interpreted as the proportion of exposed cases for whom the disease is attributable to the exposure. It
be prevented by blocking the effect of the exposure or eliminating the exposure.

The proportion of all cases occurring in a mixed population of exposed and unexposed individuals that is atributable to exposure can be determined as

$$
A P_{T}=\frac{I_{T}-I_{0}}{I_{T}}=\frac{P_{0} I_{1}+\left(1-P_{0}\right) I_{0}-I_{0}}{P_{0} I_{2}+\left(1-P_{0}\right) I_{0}}
$$

where l_{T} is the overall incidence rate in the combined population of exposed and unexposed individuals and P_{0} represents the proportion of the total population that is exposed. Dividing the numerator and denominator of the above expression by $\mathrm{P}_{6} \mathrm{I}_{0}$ gives

$$
A P_{T}=\frac{R R-1}{R R+1 / P_{0}-1}
$$

Since the incidence rate ratio can be estimated by the exposure odds ratio. $P_{1}\left(1-P_{0}\right) /\left[P_{0}\left(1-P_{i}\right)\right]$, where P_{1} is the proportion of cases that is exposed (see Chapter 6), we can also write the above expression as [Wiettinen, 1974]

$$
A P_{T}=\frac{(R R-1) P_{1}}{R R}=A P_{E} \cdot P_{2}
$$

If an exposure is preventive, so that $\mathrm{I}_{1}<\mathrm{I}_{0}$, the absolute effect is negative and the rate ratio is less than 1.0. The atributable proporion is undefined for preventives, but an analogous measure, the prevented fraction (or proportion) was defined for preventives by Miettinen $[1974]$ as

$$
\mathrm{PF}=\frac{\mathrm{I}_{0}-\mathrm{I}_{1}}{\mathrm{I}_{0}}=1-\mathrm{RR}
$$

This prevented fraction can be interpreted as the proportion of the poiential cases (in the absence of exposure) that was prevented by exposure.

REFERENCES
Cole, P., and Macifahon, B. Auributable risk percent in case-control studies. Br. J. Prev: Soc. Med. 1971; 25:242-244.
Cornfield, J, and Haenszel, w. Some aspects of remospective studies. J. Chron. Dis. 1960; 11:523-534. Miettinen. O.S. Proportion of disease caused or prevented by a given exposure, ...in Am I Epidemiol. 1974; 99:325-232.

